Transition from monolithic ML workflows to independant feature pipelines, training pipelines, and inference pipelines. This will enable improved collaboration between your Data and ML teams, and improve operations and maintanability of your ML systems.
Feature engineering at reasonable scale. Bring your own code with you, use any popular library and framework in Hopsworks.
Role-based access control, project-based multi-tenancy, custom metadata for governance.
Feature Engineering at scale, and with the freshest features. Batch or Streaming feature pipelines.
Your cloud, your infrastructure, on-premise or anywhere else; managed clusters on AWS, Azure, or GCP.
Use Python, Spark or Flink with the highest performance pipelines for reading and writing features.
Enterprise Support available 24/7 on your preferred communication channel. SLOs for your feature store.
Achieve an 80% reduction in cost over time starting from the second ML models are deployed in production.
MLOps with a feature store allows your organisation to put your data into production, faster.
Accelerate your machine learning projects and unlock the full potential of your data with our feature store comparison guide.
Read our docs to find out more.