In this blog we present an end to end Git based workflow to test and deploy feature engineering, model training and inference pipelines.
In this blog, we introduce Hopsworks Connector API that is used to mount a table in an external data source as an external feature group in Hopsworks.
Discover how you can easily make the journey from ML models to putting prediction services in production by choosing best-of-breed technologies.
Learn how the Hopsworks feature store APIs work and what it takes to go from a Pandas DataFrame to features used by models for both training and inference.
Hopsworks Serverless is the first serverless feature store for ML, allowing you to manage features and models seamlessly without worrying about scaling, configuration or management of servers.
Hopsworks is the first feature store to extend its support from the traditional Big Data platforms to the Pandas-sized data realm, where Python reigns supreme. A new Python API is also provided.
Hopsworks 3.0 is a new release focused on best-in-class Python support, Feature Views unifying Offline and Online read APIs to the Feature Store, Great Expectations support, KServe and a Model serving
An introduction to the EU AI Act and how Feature Stores provide a great solution to the obligations imposed by the regulation.
Operational machine learning requires the offline and online testing of both features and models. In this article, we show you how to design, build, and run test for features.
Learn how to connect Hopsworks to Snowflake and create features and make them available both offline in Snowflake and online in Hopsworks.
Learn how to set up customized alerts in Hopsworks for different events that are triggered as part of the ingestion pipeline.
With support to Apache Hudi, the Hopsworks Feature Store offers lakehouse capabilities to improve automated feature pipelines and training pipelines (MLOps).
Read about how the Hopsworks Feature Store abstracts away the complexity of a dual database system, unifying feature access for online and batch applications.
Recently, one of Sweden’s largest banks trained generative adversarial neural networks (GANs) using NVIDIA GPUs as part of its fraud and money-laundering prevention strategy.
Seeing how Redis is a popular open-source feature store with features significantly similar to RonDB, we compared the innards of RonDB’s multithreading architecture to the commercial Redis products.
Learn how to design and ingest features, browse existing features, create training datasets as DataFrames or as files on Azure Blob storage.
Connect the Hopsworks Feature Store to Amazon Redshift to transform your data into features to train models and make predictions.
Use JOINs for feature reuse to save on infrastructure and the number of feature pipelines needed to maintain models in production.
The feature store is a data warehouse of features for machine learning (ML). Architecturally, it differs from the traditional data warehouse in that it is a dual-database.
Learn how to integrate Kubeflow with Hopsworks and take advantage of its Feature Store and scale-out deep learning capabilities.
We have many conversations with companies and organizations who are deciding between building their own feature store and buying one. We thought we would share our experience of building one.
Integrate AWS SageMaker with Hopsworks to manage, discover and use features for creating training datasets and for serving features to operational models.
This blog introduces the Hopsworks Feature Store for Databricks, and how it can accelerate and govern your model development and operations on Databricks.
This blog introduces platforms and methods for continuous integration (CI), delivery (CD), and training (CT) with ML platforms, with details on how to do CI/CD MLOps with a Feature Store.
Deep learning is now the state-of-the-art technique for identifying financial transactions suspected of money laundering. It delivers a lower number of false positives and with higher accuracy.
In this blog, we discuss the state-of-the-art in data management and machine learning pipelines (within the wider field of MLOps) and present the first open-source feature store, Hopsworks.